↳ Prolog
↳ PrologToPiTRSProof
inorder_in_ga(nil, []) → inorder_out_ga(nil, [])
inorder_in_ga(tree(L, V, R), I) → U1_ga(L, V, R, I, inorder_in_ga(L, LI))
U1_ga(L, V, R, I, inorder_out_ga(L, LI)) → U2_ga(L, V, R, I, LI, inorder_in_ga(R, RI))
U2_ga(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_ga(L, V, R, I, append_in_gga(LI, .(V, RI), I))
append_in_gga([], X, X) → append_out_gga([], X, X)
append_in_gga(.(X, Xs), Ys, .(X, Zs)) → U4_gga(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
U4_gga(X, Xs, Ys, Zs, append_out_gga(Xs, Ys, Zs)) → append_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ga(L, V, R, I, append_out_gga(LI, .(V, RI), I)) → inorder_out_ga(tree(L, V, R), I)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
inorder_in_ga(nil, []) → inorder_out_ga(nil, [])
inorder_in_ga(tree(L, V, R), I) → U1_ga(L, V, R, I, inorder_in_ga(L, LI))
U1_ga(L, V, R, I, inorder_out_ga(L, LI)) → U2_ga(L, V, R, I, LI, inorder_in_ga(R, RI))
U2_ga(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_ga(L, V, R, I, append_in_gga(LI, .(V, RI), I))
append_in_gga([], X, X) → append_out_gga([], X, X)
append_in_gga(.(X, Xs), Ys, .(X, Zs)) → U4_gga(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
U4_gga(X, Xs, Ys, Zs, append_out_gga(Xs, Ys, Zs)) → append_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ga(L, V, R, I, append_out_gga(LI, .(V, RI), I)) → inorder_out_ga(tree(L, V, R), I)
INORDER_IN_GA(tree(L, V, R), I) → U1_GA(L, V, R, I, inorder_in_ga(L, LI))
INORDER_IN_GA(tree(L, V, R), I) → INORDER_IN_GA(L, LI)
U1_GA(L, V, R, I, inorder_out_ga(L, LI)) → U2_GA(L, V, R, I, LI, inorder_in_ga(R, RI))
U1_GA(L, V, R, I, inorder_out_ga(L, LI)) → INORDER_IN_GA(R, RI)
U2_GA(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_GA(L, V, R, I, append_in_gga(LI, .(V, RI), I))
U2_GA(L, V, R, I, LI, inorder_out_ga(R, RI)) → APPEND_IN_GGA(LI, .(V, RI), I)
APPEND_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U4_GGA(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
APPEND_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GGA(Xs, Ys, Zs)
inorder_in_ga(nil, []) → inorder_out_ga(nil, [])
inorder_in_ga(tree(L, V, R), I) → U1_ga(L, V, R, I, inorder_in_ga(L, LI))
U1_ga(L, V, R, I, inorder_out_ga(L, LI)) → U2_ga(L, V, R, I, LI, inorder_in_ga(R, RI))
U2_ga(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_ga(L, V, R, I, append_in_gga(LI, .(V, RI), I))
append_in_gga([], X, X) → append_out_gga([], X, X)
append_in_gga(.(X, Xs), Ys, .(X, Zs)) → U4_gga(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
U4_gga(X, Xs, Ys, Zs, append_out_gga(Xs, Ys, Zs)) → append_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ga(L, V, R, I, append_out_gga(LI, .(V, RI), I)) → inorder_out_ga(tree(L, V, R), I)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
INORDER_IN_GA(tree(L, V, R), I) → U1_GA(L, V, R, I, inorder_in_ga(L, LI))
INORDER_IN_GA(tree(L, V, R), I) → INORDER_IN_GA(L, LI)
U1_GA(L, V, R, I, inorder_out_ga(L, LI)) → U2_GA(L, V, R, I, LI, inorder_in_ga(R, RI))
U1_GA(L, V, R, I, inorder_out_ga(L, LI)) → INORDER_IN_GA(R, RI)
U2_GA(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_GA(L, V, R, I, append_in_gga(LI, .(V, RI), I))
U2_GA(L, V, R, I, LI, inorder_out_ga(R, RI)) → APPEND_IN_GGA(LI, .(V, RI), I)
APPEND_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U4_GGA(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
APPEND_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GGA(Xs, Ys, Zs)
inorder_in_ga(nil, []) → inorder_out_ga(nil, [])
inorder_in_ga(tree(L, V, R), I) → U1_ga(L, V, R, I, inorder_in_ga(L, LI))
U1_ga(L, V, R, I, inorder_out_ga(L, LI)) → U2_ga(L, V, R, I, LI, inorder_in_ga(R, RI))
U2_ga(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_ga(L, V, R, I, append_in_gga(LI, .(V, RI), I))
append_in_gga([], X, X) → append_out_gga([], X, X)
append_in_gga(.(X, Xs), Ys, .(X, Zs)) → U4_gga(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
U4_gga(X, Xs, Ys, Zs, append_out_gga(Xs, Ys, Zs)) → append_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ga(L, V, R, I, append_out_gga(LI, .(V, RI), I)) → inorder_out_ga(tree(L, V, R), I)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GGA(Xs, Ys, Zs)
inorder_in_ga(nil, []) → inorder_out_ga(nil, [])
inorder_in_ga(tree(L, V, R), I) → U1_ga(L, V, R, I, inorder_in_ga(L, LI))
U1_ga(L, V, R, I, inorder_out_ga(L, LI)) → U2_ga(L, V, R, I, LI, inorder_in_ga(R, RI))
U2_ga(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_ga(L, V, R, I, append_in_gga(LI, .(V, RI), I))
append_in_gga([], X, X) → append_out_gga([], X, X)
append_in_gga(.(X, Xs), Ys, .(X, Zs)) → U4_gga(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
U4_gga(X, Xs, Ys, Zs, append_out_gga(Xs, Ys, Zs)) → append_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ga(L, V, R, I, append_out_gga(LI, .(V, RI), I)) → inorder_out_ga(tree(L, V, R), I)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GGA(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_IN_GGA(.(X, Xs), Ys) → APPEND_IN_GGA(Xs, Ys)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
INORDER_IN_GA(tree(L, V, R), I) → INORDER_IN_GA(L, LI)
U1_GA(L, V, R, I, inorder_out_ga(L, LI)) → INORDER_IN_GA(R, RI)
INORDER_IN_GA(tree(L, V, R), I) → U1_GA(L, V, R, I, inorder_in_ga(L, LI))
inorder_in_ga(nil, []) → inorder_out_ga(nil, [])
inorder_in_ga(tree(L, V, R), I) → U1_ga(L, V, R, I, inorder_in_ga(L, LI))
U1_ga(L, V, R, I, inorder_out_ga(L, LI)) → U2_ga(L, V, R, I, LI, inorder_in_ga(R, RI))
U2_ga(L, V, R, I, LI, inorder_out_ga(R, RI)) → U3_ga(L, V, R, I, append_in_gga(LI, .(V, RI), I))
append_in_gga([], X, X) → append_out_gga([], X, X)
append_in_gga(.(X, Xs), Ys, .(X, Zs)) → U4_gga(X, Xs, Ys, Zs, append_in_gga(Xs, Ys, Zs))
U4_gga(X, Xs, Ys, Zs, append_out_gga(Xs, Ys, Zs)) → append_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_ga(L, V, R, I, append_out_gga(LI, .(V, RI), I)) → inorder_out_ga(tree(L, V, R), I)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
U1_GA(V, R, inorder_out_ga(LI)) → INORDER_IN_GA(R)
INORDER_IN_GA(tree(L, V, R)) → U1_GA(V, R, inorder_in_ga(L))
INORDER_IN_GA(tree(L, V, R)) → INORDER_IN_GA(L)
inorder_in_ga(nil) → inorder_out_ga([])
inorder_in_ga(tree(L, V, R)) → U1_ga(V, R, inorder_in_ga(L))
U1_ga(V, R, inorder_out_ga(LI)) → U2_ga(V, LI, inorder_in_ga(R))
U2_ga(V, LI, inorder_out_ga(RI)) → U3_ga(append_in_gga(LI, .(V, RI)))
append_in_gga([], X) → append_out_gga(X)
append_in_gga(.(X, Xs), Ys) → U4_gga(X, append_in_gga(Xs, Ys))
U4_gga(X, append_out_gga(Zs)) → append_out_gga(.(X, Zs))
U3_ga(append_out_gga(I)) → inorder_out_ga(I)
inorder_in_ga(x0)
U1_ga(x0, x1, x2)
U2_ga(x0, x1, x2)
append_in_gga(x0, x1)
U4_gga(x0, x1)
U3_ga(x0)
From the DPs we obtained the following set of size-change graphs: